PRELIMINARY

AHV2800 Series

Hybrid - High Reliability
DC/DC Converters

DESCRIPTION

The AHV series of DC/DC converters are designed to replace the AHE/ATO family of converters in applications requiring compliance to MIL-STD-704A through E , in particular the input surge requirement of 80 volts specified in MIL-STD-704A. The converters are designed to withstand transient input voltage of 80 volts. No input voltage or output power derating is necessary over the full military temperature range.

These converters are packaged in an extremely rugged, low profile package that meets all requirements of MIL-STD-883 and MIL-PRF-38534. Parallel seam weld sealing and the use of ceramic pin feedthru seals assure long term hermeticity after exposure to extended temperature cycling.

The basic circuit is a push-pull forward topology using power MOSFET switches. The nominal switching frequency is 500 KHz . A unique current injection circuit assures current balancing in the power switches. All AHV series converters use a single stage LC input filter to attenuate input ripple current. A low power 11.5 volt series regulator provides power to an epitaxial CMOS custom pulse width modulator integrated circuit. This single integrated circuit provides all PWM primary circuit functions. Power is transferred from primary to secondary through a ferrite core power transformer. An error voltage signal is generated by comparing a highly stable reference voltage with the converter output voltage and drives the PWM through a unique wideband magnetic feedback circuit. This proprietary feedback circuit provides an extremely wide bandwidth, high gain control loop, with high phase margin. The feedback control loop gain is insensitive to temperature, radiation, aging, and variations in manufacturing. The transfer function of the feedback circuit is a function of the feedback transformer turns ratio which cannot change when subjected to enviromental extremes.

Manufactured in a facility fully qualified to MIL-PRF38534, these converters are available in four screening grades to satisfy a wide range of requirements. The CH grade is fully compliant to
the requirements of MIL-PRF-38534 for class H . The HB grade is processed and screened to the class H requirement, but may not necessarily meet all of the other MIL-PRF-38534 requirements, e.g., element evaluation and Periodic Inspection (P.I.) not required. Both grades are tested to meet the complete group " A " test specification over the full military temperature range without output power deration. Two grades with more limited screening are also available for use in less demanding applications. Variations in electrical, mechanical and screening can be accommodated. Contact Lambda Advanced Analog for special requirements.

FEATURES

■ 80 Transient (100 msec max.) Absolute Maximum Input

- $50 \mathrm{~V}_{\mathrm{DC}}$ Absolute Maximum Input (Continuous)
- 16-40 V_{DC} Input Range
- Single, Dual, and Triple Outputs
- 15 Watt Output Power (No Temperature Derating)
- Low Input/Output Noise
- Full Military Temperature Range
- Wideband PWM Control Loop
- Magnetic Feedback

■ Low Profile Hermetic Package (.405")
■ Short Circuit and Overload Protection
■ Constant Switching Frequency (500 KHz)

- True Hermetic Package (Parallel Seam Welded, Ceramic Pin Feedthru

SPECIFICATIONS (SINGLE OUTPUT MODELS)

TCASE $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}$ In $=+28 \mathrm{~V} \pm 5 \%$ unless otherwise specified

```
ABSOLUTE MAXIMUM RATINGS
Input Voltage
Power Output
Soldering
Temperature Range
```

```
-0.5 V to 50 VDC (Continuous) 80 V (100ms)
```

-0.5 V to 50 VDC (Continuous) 80 V (100ms)
Internally limited, 17.5W typical
Internally limited, 17.5W typical
300}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ for }10\mathrm{ seconds (1 pin at a time)
300}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ for }10\mathrm{ seconds (1 pin at a time)
Operating }-5\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to }13\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ case }\mp@subsup{}{}{9
Operating }-5\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to }13\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ case }\mp@subsup{}{}{9
Storage - }6\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to + }13\mp@subsup{5}{}{\circ}\textrm{C

```
    Storage - }6\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to + }13\mp@subsup{5}{}{\circ}\textrm{C
```


Notes:

1. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
2. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
3. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter shall be guaranteed to the limits specified.
4. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
5. Load step transition time between 2 and 10 microseconds.
6. Recovery time is measured from the initiation of the transient to where Vout has returned to within ± 1 percent of Vout at 50 percent load.
7. Input step transition time between 2 and 10 microseconds.
8. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
9. Above $125^{\circ} \mathrm{C}$ case temperature, derate output power linearly to 0 at $135^{\circ} \mathrm{C}$ case.

SPECIFICATIONS (DUAL OUTPUT MODELS)

TCASE $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}$ IN $=+28 \mathrm{~V} \pm 5 \%$ unless otherwise specified

Notes:

1. Tested at each output
2. Parameter guaranteed by line and load regulation tests.
3. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
4. Total power at both outputs.
5. When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation.
6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
8. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum powe dissipation.
9. Load step transition time between 2 and 10 microseconds.
10. Recovery time is measured from the initiation of the transient to where Vout has returned to within ± 1 percent of Vout at 50 percent load.
11. Input step transition time between 2 and 10 microseconds.
12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
13. Above $125^{\circ} \mathrm{C}$ case temperature, derate output power linearly to 0 at $135^{\circ} \mathrm{C}$ case.

SPECIFICATIONS (TRIPLE OUTPUT MODELS)

TCASE $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{V}=+28 \mathrm{~V} \pm 5 \%$ unless otherwise specified

ABSOLUTE MAXIMUM RATINGS	
Input Voltage	-0.5 V to 50 VDC (Continuous) $80 \mathrm{~V}(100 \mathrm{~ms})$
Power Output	Internally limited, 17.5 W typical
Soldering	$300^{\circ} \mathrm{C}$ for 10 seconds (1 pin at a time)
Temperature Range	Operating$-55^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$ case ${ }^{8}$ Storage $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$

STEP LINE CHANGES Output Transient ${ }^{7,11}$ Recovery 7,10,11	VOtuine TTLINE	Input step 16 to 40 VDC Input step 40 to 16 VDC Input step 16 to 40 VDC Input step 40 to 16 VDC	4 4 4 4	$\begin{array}{r} 1200 \\ -1500 \\ 4 \\ 4 \\ \hline \end{array}$	$\begin{array}{r} 1200 \\ -1500 \\ 4 \\ 4 \\ \hline \end{array}$	mVpk mVpk ms ms ms
TURN-ON Overshoot ${ }^{1}$ Delay ${ }^{1,12}$	VTon os Ton D	$\begin{aligned} & \text { IOUT }=0 \text { and } \pm 625 \mathrm{~mA} \\ & \text { IOUT }=0 \text { and } \pm 625 \mathrm{~mA} \end{aligned}$	4	$\begin{array}{r}750 \\ 15 \\ \hline\end{array}$	$\begin{array}{r}750 \\ 15 \\ \hline\end{array}$	$\begin{gathered} \mathrm{mVpk} \\ \mathrm{~ms} \end{gathered}$
LOAD FAULT RECOVERY ${ }^{7}$	trLF		4	15	15	ms

Notes:

1. Tested at each output
2. Parameter guaranteed by line and load regulation tests.
3. At least 25 percent of the total power should be taken from the (+5 volt) main output.
4. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
5. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
8. Above $125^{\circ} \mathrm{C}$ case temperature, derate output power linearly to 0 at $135^{\circ} \mathrm{C}$ case.
9. Load step transition time between 2 and 10 microseconds.
10. Recovery time is measured from the initiation of the transient to where Vout has returned to within ± 1 percent of Vout at 50 percent load.
11. Input step transition time between 2 and 10 microseconds.
12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.

PART NUMBER

STANDARD MILITARY DRAWING CROSS REFERENCE

Lambda Advanced Analog part no.	Standardized ${ }^{* *}$ military dwg.
AHV2805 SF/CH	$5962-91773$
AHV2812 SF/CH	$5962-92112$
AHV2815 SF/CH	$5962-92113$
AHV2812DF/CH	$5962-92114$
AHV2815 DF/CH	$5962-92774$
AHV2812 TF/CH	$5962-92115$
AHV2815 TF/CH	$5962-92116$

** Pending consult factory for status.

SCREENING DETAILS

Requirement	MIL-STD-883 Method	No Suffix	ES Suffix	HB Suffix	CH Suffix
Temperature Range		$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Element Evaluation					MIL-PRF-38534
Internal Visual	2017	-	\checkmark	\checkmark	\checkmark
Temperature Cycle	1010		Cond B	Cond C	Cond C
Constant Acceleration	2001		500 g	Cond A	Cond A
Burn-in	1015		96 hrs @ $125^{\circ} \mathrm{C}$	160 hrs @ $125^{\circ} \mathrm{C}$	160 hrs @ $125^{\circ} \mathrm{C}$
Final Electrical (Group A)	MIL-STD-38534 \& Specification	$25^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$-55,+25,+125^{\circ} \mathrm{C}$	$-55,+25,+125^{\circ} \mathrm{C}$
Seal, Fine \& Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
External Visual	2009	\uparrow	\checkmark	\checkmark	\checkmark

+ per Commercial Standards

Double
Output
Models

Triple
Output
Models

MECHANICAL OUTLINE

Single and Dual Output Models

PIN DESIGNATION

Single Output Models

Pin 1 Positive Input
Pin 2 Inhibit Input
Pin 3 Output adjust*
Pin 4 Output common
Pin 5 Positive output

Dual Output Models

Pin 1 Positive Input
Pin 2 Inhibit Input
Pin 3 Positive output
Pin 4 Output common
Pin 5 Negative output

Triple Output Models

Pin 1 Positive Input
Pin $2+5 \mathrm{~V}$ dc output
Pin 3 Output common
Pin 4 Neg. Dual output (12/15Vdc)
Pin 5 Pos. Dual output (12/15Vdc)

Pin 10 Input common
Pin 9 N/C
Pin 8 Case gnd
Pin 7 N/C
Pin 6 N/C

Pin 10 Input common
Pin 9 N/C
Pin 8 Case gnd
Pin 7 N/C
Pin 6 N/C

Pin 10 Input common
Pin 9 N/C
Pin 8 Inhibit Input
Pin 7 Case gnd
Pin 6 N/C

APPLICATION INFORMATION

Inhibit function

Connecting the inhibit pin (Pin 2 of single and dual models, pin 8 of triple models) to the input return (Pin 10) will cause the converter to shut down and operate in a low power standby mode. Power consumption in this mode is calculated by multiplying Vin times the input current inhibited, typically 225 mw at Vin equal to 28 volts. The input current inhibited is relatively constant with changes in Vin. The open circuit inhibit pin voltage is typically 11.5 volts and can be conveniently driven by an open collector driver. An internal pullup resistor enables the user to leave this pin floating if the inhibit function is not used in their particular application. All models use identical inhibit internal circuits. Forcing inhibit pin to any voltage between 0 and 6 volts will assure the converter is inhibited. The input current to this pin is 500μ a maximum at $\mathrm{Vpin} 2=$ to 0 volts. The converter can be turned on by opening Pin 2 or forcing a voltage from 10 to 50 volts. Inhibit pin current from 10 to 50 volts is less than $\pm 50 \mu \mathrm{a}$.

EMI Filter

An optional EMI filter (AFC461) will reduce the input ripple current to levels below the limits imposed by MIL-STD-461 CEO3
*Output Adjust (Single Output Models Only)
The output voltage of the AHV28XXS can be adjusted upward by connecting Output Adjust (Pin 3) and Output Common (Pin 4) as shown in Table 1.

Resistance, ohm	Output Voltage Increase, \%		
Pin 3 to 4	$\mathbf{5 V}$	$\mathbf{1 2 V}$	$\mathbf{1 5 V}$
x	0	0	0
390 K	$+1.0 \%$	$+1.6 \%$	$+1.7 \%$
145 K	$+2.0 \%$	$+3.2 \%$	$+3.4 \%$
63 K	$+3.1 \%$	$+4.9 \%$	$+5.1 \%$
22 K	$+4.1 \%$	$+6.5 \%$	$+6.8 \%$
0	$+5.0 \%$	$+7.9 \%$	$+8.3 \%$

Table 1: Output Adjustment Resistor Values

